23.2.124 problem 126

Internal problem ID [5479]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 126
Date solved : Tuesday, September 30, 2025 at 12:45:13 PM
CAS classification : [_quadrature]

\begin{align*} x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \ln \left (x \right )+c_1 \\ y &= c_1 \,{\mathrm e}^{x} \\ \end{align*}
Mathematica. Time used: 0.007 (sec). Leaf size: 20
ode=x (D[y[x],x])^2-(1+x y[x])D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x\\ y(x)&\to \log (x)+c_1 \end{align*}
Sympy. Time used: 0.139 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 - (x*y(x) + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \log {\left (x \right )}, \ y{\left (x \right )} = C_{1} e^{x}\right ] \]