23.2.142 problem 145

Internal problem ID [5497]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 145
Date solved : Tuesday, September 30, 2025 at 12:45:35 PM
CAS classification : [_separable]

\begin{align*} x^{2} {y^{\prime }}^{2}&=y^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=x^2*diff(y(x),x)^2 = y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 x \\ y &= \frac {c_1}{x} \\ \end{align*}
Mathematica. Time used: 0.025 (sec). Leaf size: 24
ode=x^2 (D[y[x],x])^2==y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{x}\\ y(x)&\to c_1 x\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} x, \ y{\left (x \right )} = \frac {C_{1}}{x}\right ] \]