Internal
problem
ID
[5509]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
157
Date
solved
:
Tuesday, September 30, 2025 at 12:46:03 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x^2*diff(y(x),x)^2+x*(x^3-2*y(x))*diff(y(x),x)-(2*x^3-y(x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2+x(x^3-2 y[x])D[y[x],x]-(2 x^3-y[x])y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 + x*(x**3 - 2*y(x))*Derivative(y(x), x) - (2*x**3 - y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(-x**3 + 2*y(x)) + sqrt(x**5*(x**3 + 4*