23.2.159 problem 162

Internal problem ID [5514]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 162
Date solved : Tuesday, September 30, 2025 at 12:46:06 PM
CAS classification : [_separable]

\begin{align*} x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2}&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x^2*diff(y(x),x)^2-5*x*y(x)*diff(y(x),x)+6*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 \,x^{3} \\ y &= c_1 \,x^{2} \\ \end{align*}
Mathematica. Time used: 0.027 (sec). Leaf size: 26
ode=x^2 (D[y[x],x])^2-5 x y[x] D[y[x],x]+6 y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 x^2\\ y(x)&\to c_1 x^3\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 - 5*x*y(x)*Derivative(y(x), x) + 6*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} x^{3}, \ y{\left (x \right )} = C_{1} x^{2}\right ] \]