23.2.228 problem 234

Internal problem ID [5583]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 234
Date solved : Tuesday, September 30, 2025 at 01:00:37 PM
CAS classification : [_quadrature]

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \end{align*}
Maple. Time used: 0.122 (sec). Leaf size: 46
ode:=(1-y(x)^2)*diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sin \left (\operatorname {RootOf}\left (\sin \left (\textit {\_Z} \right ) \operatorname {csgn}\left (\cos \left (\textit {\_Z} \right )\right ) \cos \left (\textit {\_Z} \right )+\textit {\_Z} +2 c_1 -2 x \right )\right ) \\ y &= \sin \left (\operatorname {RootOf}\left (-\sin \left (\textit {\_Z} \right ) \operatorname {csgn}\left (\cos \left (\textit {\_Z} \right )\right ) \cos \left (\textit {\_Z} \right )-\textit {\_Z} +2 c_1 -2 x \right )\right ) \\ \end{align*}
Mathematica. Time used: 0.032 (sec). Leaf size: 69
ode=(1-y[x]^2) (D[y[x],x])^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\frac {1}{2} \left (\text {$\#$1} \sqrt {1-\text {$\#$1}^2}+\arcsin (\text {$\#$1})\right )\&\right ][-x+c_1]\\ y(x)&\to \text {InverseFunction}\left [\frac {1}{2} \left (\text {$\#$1} \sqrt {1-\text {$\#$1}^2}+\arcsin (\text {$\#$1})\right )\&\right ][x+c_1] \end{align*}
Sympy. Time used: 0.857 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - y(x)**2)*Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- \frac {1}{y^{2} - 1}}}\, dy = C_{1} - x, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- \frac {1}{y^{2} - 1}}}\, dy = C_{1} + x\right ] \]