Internal
problem
ID
[5600]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
251
Date
solved
:
Saturday, October 04, 2025 at 04:39:14 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]
ode:=(a-b)*y(x)^2*diff(y(x),x)^2-2*b*x*y(x)*diff(y(x),x)-a*b-b*x^2+a*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a-b) y[x]^2 (D[y[x],x])^2 -2 b x y[x] D[y[x],x]-a b -b x^2+a y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a*b + a*y(x)**2 - b*x**2 - 2*b*x*y(x)*Derivative(y(x), x) + (a - b)*y(x)**2*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out