23.2.253 problem 266

Internal problem ID [5608]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 266
Date solved : Tuesday, September 30, 2025 at 01:11:43 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a&=0 \end{align*}
Maple. Time used: 0.125 (sec). Leaf size: 279
ode:=9*x*y(x)^4*diff(y(x),x)^2-3*y(x)^5*diff(y(x),x)-a = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 2^{{1}/{3}} \left (-a x \right )^{{1}/{6}} \\ y &= -2^{{1}/{3}} \left (-a x \right )^{{1}/{6}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) 2^{{1}/{3}} \left (-a x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (i \sqrt {3}-1\right ) 2^{{1}/{3}} \left (-a x \right )^{{1}/{6}}}{2} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) 2^{{1}/{3}} \left (-a x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (1+i \sqrt {3}\right ) 2^{{1}/{3}} \left (-a x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{c_1} \\ y &= -\frac {\left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{c_1} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) \left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= \frac {\left (1+i \sqrt {3}\right ) \left (a \left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.927 (sec). Leaf size: 358
ode=9 x y[x]^4  (D[y[x],x])^2 -3 y[x]^5 D[y[x],x]-a==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt [3]{-\frac {1}{2}} e^{-\frac {c_1}{6}} \sqrt [3]{-4 a x+e^{c_1}}\\ y(x)&\to \frac {e^{-\frac {c_1}{6}} \sqrt [3]{-4 a x+e^{c_1}}}{\sqrt [3]{2}}\\ y(x)&\to \frac {(-1)^{2/3} e^{-\frac {c_1}{6}} \sqrt [3]{-4 a x+e^{c_1}}}{\sqrt [3]{2}}\\ y(x)&\to -\sqrt [3]{-\frac {1}{2}} \sqrt [3]{-e^{-\frac {c_1}{2}} \left (-4 a x+e^{c_1}\right )}\\ y(x)&\to \frac {\sqrt [3]{e^{-\frac {c_1}{2}} \left (4 a x-e^{c_1}\right )}}{\sqrt [3]{2}}\\ y(x)&\to \frac {(-1)^{2/3} \sqrt [3]{-e^{-\frac {c_1}{2}} \left (-4 a x+e^{c_1}\right )}}{\sqrt [3]{2}}\\ y(x)&\to -i \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x}\\ y(x)&\to i \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x}\\ y(x)&\to -\sqrt [6]{-1} \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x}\\ y(x)&\to \sqrt [6]{-1} \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x}\\ y(x)&\to -(-1)^{5/6} \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x}\\ y(x)&\to (-1)^{5/6} \sqrt [3]{2} \sqrt [6]{a} \sqrt [6]{x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + 9*x*y(x)**4*Derivative(y(x), x)**2 - 3*y(x)**5*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out