Internal
problem
ID
[5626]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
286
Date
solved
:
Tuesday, September 30, 2025 at 01:14:28 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=diff(y(x),x)^3-(b*x+a)*diff(y(x),x)+b*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3 -(a+b*x)D[y[x],x]+b*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b*y(x) - (a + b*x)*Derivative(y(x), x) + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out