Internal
problem
ID
[5642]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
306
Date
solved
:
Tuesday, September 30, 2025 at 01:24:01 PM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^3-(x^2+x*y(x)+y(x)^2)*diff(y(x),x)^2+x*y(x)*(x^2+x*y(x)+y(x)^2)*diff(y(x),x)-x^3*y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3 -(x^2+x y[x]+ y[x]^2) (D[y[x],x])^2 +x y[x](x^2 +x y[x]+ y[x]^2) D[y[x],x]-x^3 y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*y(x)**3 + x*(x**2 + x*y(x) + y(x)**2)*y(x)*Derivative(y(x), x) - (x**2 + x*y(x) + y(x)**2)*Derivative(y(x), x)**2 + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)