Internal
problem
ID
[5677]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
348
Date
solved
:
Tuesday, September 30, 2025 at 01:49:40 PM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^4+4*y(x)*diff(y(x),x)^3+6*y(x)^2*diff(y(x),x)^2-(1-4*y(x)^3)*diff(y(x),x)-(3-y(x)^3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^4 +4 y[x] (D[y[x],x])^3+6 y[x]^2 (D[y[x],x])^2-(1-4 y[x]^3) D[y[x],x]- (3-y[x]^3) y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq((y(x)**3 - 3)*y(x) + (4*y(x)**3 - 1)*Derivative(y(x), x) + 6*y(x)**2*Derivative(y(x), x)**2 + 4*y(x)*Derivative(y(x), x)**3 + Derivative(y(x), x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)