Internal
problem
ID
[5708]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
404
Date
solved
:
Tuesday, September 30, 2025 at 02:01:33 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=ln(diff(y(x),x))+4*x*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Log[D[y[x],x]]+4*x*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) - 2*y(x) + log(Derivative(y(x), x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)