Internal
problem
ID
[5714]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
411
Date
solved
:
Tuesday, September 30, 2025 at 02:01:58 PM
CAS
classification
:
[_dAlembert]
ode:=ln(cos(diff(y(x),x)))+diff(y(x),x)*tan(diff(y(x),x)) = y(x); dsolve(ode,y(x), singsol=all);
ode=Log[Cos[D[y[x],x]]]+D[y[x],x]*Tan[D[y[x],x]]==y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) + log(cos(Derivative(y(x), x))) + tan(Derivative(y(x), x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : multiple generators [_X0, log(cos(_X0)), tan(_X0)] No algorithms are implemented to solve equation _X0*tan(_X0) - y(x) + log(cos(_X0))