23.3.4 problem 4

Internal problem ID [5718]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 02:02:02 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} x \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x) = x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x -2\right ) {\mathrm e}^{x}+c_1 x +c_2 \]
Mathematica. Time used: 0.038 (sec). Leaf size: 19
ode=D[y[x],{x,2}] == E^x*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x (x-2)+c_2 x+c_1 \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x \left (C_{2} + e^{x}\right ) - 2 e^{x} \]