Internal
problem
ID
[5761]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
49
Date
solved
:
Friday, October 03, 2025 at 01:43:48 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = (a^2+(-1+p)*p*csc(x)^2+(-1+q)*q*sec(x)^2)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == (a^2 + (-1 + p)*p*Csc[x]^2 + (-1 + q)*q*Sec[x]^2)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") p = symbols("p") q = symbols("q") y = Function("y") ode = Eq(-(a**2 + p*(p - 1)/sin(x)**2 + q*(q - 1)/cos(x)**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve (-a**2 - p*(p - 1)/sin(x)**2 - q*(q - 1)/cos(x)**2)*y(x) +