23.3.105 problem 107

Internal problem ID [5819]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 107
Date solved : Tuesday, September 30, 2025 at 02:03:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.040 (sec). Leaf size: 39
ode:=b*exp(2*a*x)*y(x)+a*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-a x} \left (c_1 \sin \left (\frac {\sqrt {b}\, {\mathrm e}^{a x}}{a}\right )+c_2 \cos \left (\frac {\sqrt {b}\, {\mathrm e}^{a x}}{a}\right )\right ) \]
Mathematica. Time used: 0.04 (sec). Leaf size: 78
ode=b*E^(2*a*x)*y[x] + a*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt {a} e^{-\frac {a x}{2}} \left (2 c_1 \cos \left (\frac {\sqrt {b e^{2 a x}}}{a}\right )+c_2 \sin \left (\frac {\sqrt {b e^{2 a x}}}{a}\right )\right )}{\sqrt {2} \sqrt [4]{b e^{2 a x}}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*y(x)*exp(2*a*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False