23.3.121 problem 123

Internal problem ID [5835]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 123
Date solved : Friday, October 03, 2025 at 01:43:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 58
ode:=b*y(x)+a*x*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {a \,x^{2}}{2}} x \left (\operatorname {KummerU}\left (\frac {2 a -b}{2 a}, \frac {3}{2}, \frac {a \,x^{2}}{2}\right ) c_2 +\operatorname {KummerM}\left (\frac {2 a -b}{2 a}, \frac {3}{2}, \frac {a \,x^{2}}{2}\right ) c_1 \right ) \]
Mathematica. Time used: 0.022 (sec). Leaf size: 67
ode=b*y[x] + a*x*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\frac {a x^2}{2}} \left (c_1 \operatorname {HermiteH}\left (\frac {b}{a}-1,\frac {\sqrt {a} x}{\sqrt {2}}\right )+c_2 \operatorname {Hypergeometric1F1}\left (\frac {a-b}{2 a},\frac {1}{2},\frac {a x^2}{2}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + b*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False