23.3.136 problem 138

Internal problem ID [5850]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 138
Date solved : Tuesday, September 30, 2025 at 02:04:10 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=-csc(x)^2*y(x)+cot(x)*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 +c_2 +\left (c_1 -c_2 \right ) \cos \left (x \right )\right ) \csc \left (x \right ) \]
Mathematica. Time used: 0.03 (sec). Leaf size: 25
ode=-(Csc[x]^2*y[x]) + Cot[x]*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1-i c_2 \cos (x)}{\sqrt {\sin ^2(x)}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)/sin(x)**2 + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -y(x)*tan(x)/sin(x)**2 + tan(x)*Derivative(y(x), (x, 2)) + Deriv