Internal
problem
ID
[5865]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
153
Date
solved
:
Friday, October 03, 2025 at 01:44:47 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-2*(cos(x)+1)*sec(x)*y(x)-(2+3*cos(x))*csc(x)*diff(y(x),x)+diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(1 + Cos[x])*Sec[x]*y[x] - (2 + 3*Cos[x])*Csc[x]*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*cos(x) - 2)*y(x)/cos(x) - (3*cos(x) + 2)*Derivative(y(x), x)/sin(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*y(x)*sin(x) - 2*y(x)*tan(x) + sin(x)*D