23.3.163 problem 165

Internal problem ID [5877]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 165
Date solved : Tuesday, September 30, 2025 at 02:05:29 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=-(a^2+1)*y(x)-2*tan(x)*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sec \left (x \right ) \left (c_1 \sinh \left (a x \right )+c_2 \cosh \left (a x \right )\right ) \]
Mathematica. Time used: 0.04 (sec). Leaf size: 32
ode=-((1 + a^2)*y[x]) - 2*Tan[x]*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sec (x) \left (c_1 e^{-a x}+\frac {c_2 e^{a x}}{2 a}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq((-a**2 - 1)*y(x) - 2*tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False