Internal
problem
ID
[5899]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
187
Date
solved
:
Friday, October 03, 2025 at 01:45:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(exp(x^2)-k^2)*x^3*y(x)-diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(E^(x^2) - k^2)*x^3*y[x] - D[y[x],x] + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") k = symbols("k") y = Function("y") ode = Eq(x**3*(-k**2 + exp(x**2))*y(x) + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False