23.3.206 problem 208

Internal problem ID [5920]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 208
Date solved : Tuesday, September 30, 2025 at 02:06:13 PM
CAS classification : [_Laguerre]

\begin{align*} y-\left (3+x \right ) y^{\prime }+x y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 22
ode:=y(x)-(x+3)*diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (3+x \right )+c_2 \,{\mathrm e}^{x} \left (x^{2}-4 x +6\right ) \]
Mathematica. Time used: 0.09 (sec). Leaf size: 26
ode=y[x] - (3 + x)*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 e^x \left (x^2-4 x+6\right )+c_1 (x+3) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - (x + 3)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False