Internal
problem
ID
[5930]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
218
Date
solved
:
Friday, October 03, 2025 at 01:45:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*b*x+a*n+b*m)*y(x)+(m+n+x*(a+b))*diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(b*m + a*n + a*b*x)*y[x] + (m + n + (a + b)*x)*D[y[x],x] + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + (m + n + x*(a + b))*Derivative(y(x), x) + (a*b*x + a*n + b*m)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None