23.3.263 problem 265

Internal problem ID [5977]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 265
Date solved : Tuesday, September 30, 2025 at 02:07:11 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} -y+x y^{\prime }+x^{2} y^{\prime \prime }&=a \,x^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=-y(x)+x*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = x^2*a; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 x +\frac {a \,x^{2}}{3}+\frac {c_1}{x} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 24
ode=-y[x] + x*D[y[x],x] + x^2*D[y[x],{x,2}] == a*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {a x^2}{3}+c_2 x+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.152 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*x**2 + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x + \frac {a x^{2}}{3} \]