Internal
problem
ID
[6005]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
293
Date
solved
:
Friday, October 03, 2025 at 01:45:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a*y(x)-2*(1-x)*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*y[x] - 2*(1 - x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*y(x) + x**2*Derivative(y(x), (x, 2)) - (2 - 2*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*y(x) - x**2*Derivative(y(x), (x, 2)))/