23.3.298 problem 300

Internal problem ID [6012]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 300
Date solved : Tuesday, September 30, 2025 at 02:19:50 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} -5 y-3 x y^{\prime }+x^{2} y^{\prime \prime }&=x^{2} \ln \left (x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 22
ode:=-5*y(x)-3*x*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = x^2*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{5}+\frac {c_1}{x}-\frac {x^{2} \ln \left (x \right )}{9} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 27
ode=-5*y[x] - 3*x*D[y[x],x] + x^2*D[y[x],{x,2}] == x^2*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 x^5-\frac {1}{9} x^2 \log (x)+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.176 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*log(x) + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x^{5} - \frac {x^{2} \log {\left (x \right )}}{9} \]