23.3.315 problem 317

Internal problem ID [6029]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 317
Date solved : Tuesday, September 30, 2025 at 02:20:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 76
ode:=(b+c*x^(2*k))*y(x)+a*x*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{-\frac {a}{2}} \sqrt {x}\, \left (\operatorname {BesselY}\left (\frac {\sqrt {a^{2}-2 a -4 b +1}}{2 k}, \frac {\sqrt {c}\, x^{k}}{k}\right ) c_2 +\operatorname {BesselJ}\left (\frac {\sqrt {a^{2}-2 a -4 b +1}}{2 k}, \frac {\sqrt {c}\, x^{k}}{k}\right ) c_1 \right ) \]
Mathematica. Time used: 0.179 (sec). Leaf size: 561
ode=(b + c*x^(2*k))*y[x] + a*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2^{-\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}+k \sqrt {a^2-2 a-4 b+1}-a k+k}{2 k^2}} k^{-\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}+k \sqrt {a^2-2 a-4 b+1}-a k+k}{2 k^2}} c^{-\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}+k \left (\sqrt {a^2-2 a-4 b+1}+a-1\right )}{4 k^2}} \left (x^{2 k}\right )^{-\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}+k \left (\sqrt {a^2-2 a-4 b+1}+a-1\right )}{4 k^2}} \left (c_2 2^{\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}}{k^2}} k^{\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}}{k^2}} c^{\frac {\sqrt {a^2-2 a-4 b+1}}{2 k}} \left (x^{2 k}\right )^{\frac {\sqrt {a^2-2 a-4 b+1}}{2 k}} \operatorname {Gamma}\left (\frac {\sqrt {a^2-2 a-4 b+1}}{2 k}+1\right ) \operatorname {BesselJ}\left (\frac {\sqrt {\left (a^2-2 a-4 b+1\right ) k^2}}{2 k^2},\frac {\sqrt {c} \sqrt {x^{2 k}}}{k}\right )+c_1 2^{\frac {\sqrt {a^2-2 a-4 b+1}}{k}} k^{\frac {\sqrt {a^2-2 a-4 b+1}}{k}} c^{\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}}{2 k^2}} \left (x^{2 k}\right )^{\frac {\sqrt {k^2 \left (a^2-2 a-4 b+1\right )}}{2 k^2}} \operatorname {Gamma}\left (1-\frac {\sqrt {a^2-2 a-4 b+1}}{2 k}\right ) \operatorname {BesselJ}\left (-\frac {\sqrt {\left (a^2-2 a-4 b+1\right ) k^2}}{2 k^2},\frac {\sqrt {c} \sqrt {x^{2 k}}}{k}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
k = symbols("k") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (b + c*x**(2*k))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : invalid input: 1 - a