Internal
problem
ID
[6055]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
344
Date
solved
:
Tuesday, September 30, 2025 at 02:20:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=y(x)*(a2+b2*x^k+c2*x^(2*k)+(-1+a1+b1*x^k)*f(x)+f(x)^2+diff(f(x),x))+x*(a1+b1*x^k+2*f(x))*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(a2 + b2*x^k + c2*x^(2*k) + (-1 + a1 + b1*x^k)*f[x] + f[x]^2 + D[f[x],x]) + x*(a1 + b1*x^k + 2*f[x])*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a1 = symbols("a1") a2 = symbols("a2") b1 = symbols("b1") b2 = symbols("b2") c2 = symbols("c2") k = symbols("k") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(a1 + b1*x**k + 2*f(x))*Derivative(y(x), x) + (a2 + b2*x**k + c2*x**(2*k) + (a1 + b1*x**k - 1)*f(x) + f(x)**2 + Derivative(f(x), x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a1*f(x)*y(x) - a2*y(x) - b1*x**k*f(x)*y(