Internal
problem
ID
[6075]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
365
Date
solved
:
Tuesday, September 30, 2025 at 02:21:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-2*y(x)+2*x*diff(y(x),x)+(-x^2+1)*diff(diff(y(x),x),x) = (-x^2+1)^2; dsolve(ode,y(x), singsol=all);
ode=-2*y[x] + 2*x*D[y[x],x] + (1 - x^2)*D[y[x],{x,2}] == (1 - x^2)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) - (1 - x**2)**2 + (1 - x**2)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(x**2 + Derivative(y(x), (x, 2)) - 2