23.3.366 problem 370

Internal problem ID [6080]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 370
Date solved : Tuesday, September 30, 2025 at 02:21:09 PM
CAS classification : [_Gegenbauer]

\begin{align*} n \left (n +2\right ) y-3 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.045 (sec). Leaf size: 68
ode:=n*(n+2)*y(x)-3*x*diff(y(x),x)+(-x^2+1)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \left (-\sqrt {x^{2}-1}+x \right ) \left (x +\sqrt {x^{2}-1}\right )^{-1-n}-c_2 \left (x +\sqrt {x^{2}-1}\right )^{n}}{\sqrt {x^{2}-1}\, \left (-\sqrt {x^{2}-1}+x \right )} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 42
ode=n*(2 + n)*y[x] - 3*x*D[y[x],x] + (1 - x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 P_{n+\frac {1}{2}}^{\frac {1}{2}}(x)+c_2 Q_{n+\frac {1}{2}}^{\frac {1}{2}}(x)}{\sqrt [4]{x^2-1}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(n*(n + 2)*y(x) - 3*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False