Internal
problem
ID
[6082]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
372
Date
solved
:
Tuesday, September 30, 2025 at 02:21:11 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=2*y(x)+4*x*diff(y(x),x)+(x^2+1)*diff(diff(y(x),x),x) = -2*x+2*cos(x); dsolve(ode,y(x), singsol=all);
ode=2*y[x] + 4*x*D[y[x],x] + (1 + x^2)*D[y[x],{x,2}] == 2*(-x + Cos[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) + 2*x + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x) - 2*cos(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x*(x*Derivative(y(x), (x, 2)) + 2) - 2*y