Internal
problem
ID
[6086]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
376
Date
solved
:
Friday, October 03, 2025 at 01:46:13 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=n*(1+a+b+n)*y(x)+(-a+b-(2+a+b)*x)*diff(y(x),x)+(-x^2+1)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=n*(1 + a + b + n)*y[x] + (-a + b - (2 + a + b)*x)*D[y[x],x] + (1 - x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(n*(a + b + n + 1)*y(x) + (1 - x**2)*Derivative(y(x), (x, 2)) + (-a + b - x*(a + b + 2))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False