Internal
problem
ID
[6089]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
379
Date
solved
:
Friday, October 03, 2025 at 01:46:17 AM
CAS
classification
:
[_Gegenbauer]
ode:=-(k-p)*(1+k+p)*y(x)-2*(1+k)*x*diff(y(x),x)+(-x^2+1)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((k - p)*(1 + k + p)*y[x]) - 2*(1 + k)*x*D[y[x],x] + (1 - x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") k = symbols("k") p = symbols("p") y = Function("y") ode = Eq(-x*(2*k + 2)*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + (-k + p)*(k + p + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False