Internal
problem
ID
[6093]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
383
Date
solved
:
Friday, October 03, 2025 at 01:46:20 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(c0*x^2+b0*x+a0)*y(x)+a*x*diff(y(x),x)+(-x^2+1)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a0 + b0*x + c0*x^2)*y[x] + a*x*D[y[x],x] + (1 - x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") a0 = symbols("a0") b0 = symbols("b0") c0 = symbols("c0") y = Function("y") ode = Eq(a*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + (a0 + b0*x + c0*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False