Internal
problem
ID
[6103]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
393
Date
solved
:
Tuesday, September 30, 2025 at 02:21:35 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=2*y(x)-3*diff(y(x),x)+(1-x)*x*diff(diff(y(x),x),x) = x*(3*x^3+1); dsolve(ode,y(x), singsol=all);
ode=2*y[x] - 3*D[y[x],x] + (1 - x)*x*D[y[x],{x,2}] == x*(1 + 3*x^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) - x*(3*x**3 + 1) + 2*y(x) - 3*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x**4 + x**2*Derivative(y(x), (x, 2))/3 - x*Derivative(y(x), (x,