Internal
problem
ID
[6130]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
421
Date
solved
:
Tuesday, September 30, 2025 at 02:22:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=6*y(x)-4*(1+x)*diff(y(x),x)+(1+x)^2*diff(diff(y(x),x),x) = x; dsolve(ode,y(x), singsol=all);
ode=6*y[x] - 4*(1 + x)*D[y[x],x] + (1 + x)^2*D[y[x],{x,2}] == x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + (x + 1)**2*Derivative(y(x), (x, 2)) - (4*x + 4)*Derivative(y(x), x) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*Derivative(y(x), (x, 2)) + 2*x*Deriv