Internal
problem
ID
[6132]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
423
Date
solved
:
Tuesday, September 30, 2025 at 02:22:05 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(1-x)^2*y(x)-2*(1-x)^2*diff(y(x),x)+(1-x)^2*diff(diff(y(x),x),x) = exp(x); dsolve(ode,y(x), singsol=all);
ode=(1 - x)^2*y[x] - 2*(1 - x)^2*D[y[x],x] + (1 - x)^2*D[y[x],{x,2}] == E^x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - x)**2*y(x) - 2*(1 - x)**2*Derivative(y(x), x) + (1 - x)**2*Derivative(y(x), (x, 2)) - exp(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x) + x**2*Derivative(y(x), (x, 2))