23.3.435 problem 440

Internal problem ID [6149]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 440
Date solved : Tuesday, September 30, 2025 at 02:22:24 PM
CAS classification : [_Jacobi, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 8 y+\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 30
ode:=8*y(x)+(1-2*x)*diff(y(x),x)+2*(1-x)*x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \left (-1+2 x \right ) \sqrt {\left (-1+x \right ) x}+8 \left (x^{2}-x +\frac {1}{8}\right ) c_1 \]
Mathematica. Time used: 0.04 (sec). Leaf size: 45
ode=8*y[x] + (1 - 2*x)*D[y[x],x] + 2*(1 - x)*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cosh \left (4 \text {arctanh}\left (\frac {1}{\sqrt {\frac {x-1}{x}}}\right )\right )+i c_2 \sinh \left (4 \text {arctanh}\left (\frac {1}{\sqrt {\frac {x-1}{x}}}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(2 - 2*x)*Derivative(y(x), (x, 2)) + (1 - 2*x)*Derivative(y(x), x) + 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False