Internal
problem
ID
[6167]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
458
Date
solved
:
Tuesday, September 30, 2025 at 02:24:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-(-4*x^2+4*x+1)*y(x)+4*(1-2*x)*x*diff(y(x),x)+4*x^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((1 + 4*x - 4*x^2)*y[x]) + 4*(1 - 2*x)*x*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + x*(4 - 8*x)*Derivative(y(x), x) + (4*x**2 - 4*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False