Internal
problem
ID
[6179]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
471
Date
solved
:
Friday, October 03, 2025 at 01:48:10 AM
CAS
classification
:
[_Jacobi]
ode:=(k^2*x+b)*y(x)+2*(a*x+1)*diff(y(x),x)+4*(1-x)*x*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(b + k^2*x)*y[x] + 2*(1 + a*x)*D[y[x],x] + 4*(1 - x)*x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") y = Function("y") ode = Eq(x*(4 - 4*x)*Derivative(y(x), (x, 2)) + (b + k**2*x)*y(x) + (2*a*x + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False