23.3.497 problem 503

Internal problem ID [6211]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 503
Date solved : Tuesday, September 30, 2025 at 02:36:24 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} -2 x y-2 \left (-x^{2}+1\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 43
ode:=-2*x*y(x)-2*(-x^2+1)*diff(y(x),x)+x*(-x^2+1)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \left (x^{2}-1\right ) \ln \left (x -1\right )}{4}+\frac {\left (-x^{2}+1\right ) c_1 \ln \left (x +1\right )}{4}+c_2 \,x^{2}-\frac {c_1 x}{2}-c_2 \]
Mathematica. Time used: 0.033 (sec). Leaf size: 48
ode=-2*x*y[x] - 2*(1 - x^2)*D[y[x],x] + x*(1 - x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\left (c_1 \left (x^2-1\right )\right )-\frac {1}{4} c_2 \left (\left (x^2-1\right ) \log (1-x)-\left (x^2-1\right ) \log (x+1)-2 x\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x**2)*Derivative(y(x), (x, 2)) - 2*x*y(x) - (2 - 2*x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False