Internal
problem
ID
[6218]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
510
Date
solved
:
Tuesday, September 30, 2025 at 02:36:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-(x^2+4*x+2)*y(x)-(-x^3-3*x^2+2*x+2)*diff(y(x),x)+x*(-x^2+2)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((2 + 4*x + x^2)*y[x]) - (2 + 2*x - 3*x^2 - x^3)*D[y[x],x] + x*(2 - x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2 - x**2)*Derivative(y(x), (x, 2)) + (-x**2 - 4*x - 2)*y(x) - (-x**3 - 3*x**2 + 2*x + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False