Internal
problem
ID
[6224]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
516
Date
solved
:
Tuesday, September 30, 2025 at 02:36:41 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(6-9*x)*y(x)-(4-5*x)*x*diff(y(x),x)+(1-x)*x^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(6 - 9*x)*y[x] - (4 - 5*x)*x*D[y[x],x] + (1 - x)*x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) - x*(4 - 5*x)*Derivative(y(x), x) + (6 - 9*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False