23.3.513 problem 519

Internal problem ID [6227]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 519
Date solved : Friday, October 03, 2025 at 01:57:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.106 (sec). Leaf size: 350
ode:=(b2*x+a2)*y(x)+x*(b1*x+a1)*diff(y(x),x)+x^2*(a0+x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 0.406 (sec). Leaf size: 391
ode=(a2 + b2*x)*y[x] + x*(a1 + b1*x)*D[y[x],x] + x^2*(a0 + x)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {a0}^{-\frac {\sqrt {\text {a0}^2-2 \text {a0} (\text {a1}+2 \text {a2})+\text {a1}^2}+\text {a0}-\text {a1}}{2 \text {a0}}} x^{-\frac {\sqrt {\text {a0}^2-2 \text {a0} (\text {a1}+2 \text {a2})+\text {a1}^2}-\text {a0}+\text {a1}}{2 \text {a0}}} \left (c_2 x^{\frac {\sqrt {\text {a0}^2-2 \text {a0} (\text {a1}+2 \text {a2})+\text {a1}^2}}{\text {a0}}} \operatorname {Hypergeometric2F1}\left (\frac {-\text {a1}+\text {a0} \left (\text {b1}+\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}\right )+\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{2 \text {a0}},\frac {\text {b1} \text {a0}-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1} \text {a0}-\text {a1}+\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{2 \text {a0}},\frac {\text {a0}+\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{\text {a0}},-\frac {x}{\text {a0}}\right )+c_1 \text {a0}^{\frac {\sqrt {\text {a0}^2-2 \text {a0} (\text {a1}+2 \text {a2})+\text {a1}^2}}{\text {a0}}} \operatorname {Hypergeometric2F1}\left (-\frac {\text {a1}-\text {a0} \left (\text {b1}+\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}\right )+\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{2 \text {a0}},-\frac {-\text {b1} \text {a0}+\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1} \text {a0}+\text {a1}+\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{2 \text {a0}},1-\frac {\sqrt {\text {a0}^2-2 (\text {a1}+2 \text {a2}) \text {a0}+\text {a1}^2}}{\text {a0}},-\frac {x}{\text {a0}}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
b1 = symbols("b1") 
b2 = symbols("b2") 
y = Function("y") 
ode = Eq(x**2*(a0 + x)*Derivative(y(x), (x, 2)) + x*(a1 + b1*x)*Derivative(y(x), x) + (a2 + b2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None