Internal
problem
ID
[6232]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
524
Date
solved
:
Friday, October 03, 2025 at 01:57:47 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(c1*x+c0)*y(x)+(b2*x^2+b1*x+b0)*diff(y(x),x)+(a1-x)*(a2-x)*(a3-x)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(c0 + c1*x)*y[x] + (b0 + b1*x + b2*x^2)*D[y[x],x] + (a1 - x)*(a2 - x)*(a3 - x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a1 = symbols("a1") a2 = symbols("a2") a3 = symbols("a3") b0 = symbols("b0") b1 = symbols("b1") b2 = symbols("b2") c0 = symbols("c0") c1 = symbols("c1") y = Function("y") ode = Eq((a1 - x)*(a2 - x)*(a3 - x)*Derivative(y(x), (x, 2)) + (c0 + c1*x)*y(x) + (b0 + b1*x + b2*x**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False