Internal
problem
ID
[6238]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
530
Date
solved
:
Tuesday, September 30, 2025 at 02:37:36 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*(b*x+3*a)*y(x)-2*x*(b*x+2*a)*diff(y(x),x)+x^2*(b*x+a)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*(3*a + b*x)*y[x] - 2*x*(2*a + b*x)*D[y[x],x] + x^2*(a + b*x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**2*(a + b*x)*Derivative(y(x), (x, 2)) - 2*x*(2*a + b*x)*Derivative(y(x), x) + (6*a + 2*b*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False