23.3.529 problem 535

Internal problem ID [6243]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 535
Date solved : Tuesday, September 30, 2025 at 02:38:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} -\left (2 x^{2}+1\right ) y+x^{4} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 27
ode:=-(2*x^2+1)*y(x)+x^4*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left ({\mathrm e}^{\frac {1}{x}} c_1 \left (x -1\right )+c_2 \,{\mathrm e}^{-\frac {1}{x}} \left (x +1\right )\right ) \]
Mathematica. Time used: 0.081 (sec). Leaf size: 35
ode=-((1 + 2*x^2)*y[x]) + x^4*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{\frac {1}{x}} (x-1) x-\frac {1}{2} c_2 e^{-1/x} x (x+1) \end{align*}
Sympy. Time used: 0.054 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 2)) + (-2*x**2 - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (\frac {C_{1} \left (\frac {i}{x}\right )^{\frac {3}{2}} J_{- \frac {3}{2}}\left (\frac {i}{x}\right )}{\left (- \frac {i}{x}\right )^{\frac {3}{2}}} + C_{2} Y_{- \frac {3}{2}}\left (- \frac {i}{x}\right )\right ) \]