Internal
problem
ID
[6268]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
561
Date
solved
:
Friday, October 03, 2025 at 01:58:05 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=b^2*y(x)+x*(a^2+2*x^2)*diff(y(x),x)+x^2*(a^2+x^2)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=b^2*y[x] + x*(a^2 + 2*x^2)*D[y[x],x] + x^2*(a^2 + x^2)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b**2*y(x) + x**2*(a**2 + x**2)**2*Derivative(y(x), (x, 2)) + x*(a**2 + 2*x**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None