Internal
problem
ID
[6271]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
564
Date
solved
:
Tuesday, September 30, 2025 at 02:39:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(b1*x^2+a1)*y(x)+x*(b0*x^2+a0)*diff(y(x),x)+(a^2+x^2)^2*(b^2+x^2)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a1 + b1*x^2)*y[x] + x*(a0 + b0*x^2)*D[y[x],x] + (a^2 + x^2)^2*(b^2 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") a0 = symbols("a0") a1 = symbols("a1") b = symbols("b") b0 = symbols("b0") b1 = symbols("b1") y = Function("y") ode = Eq(x*(a0 + b0*x**2)*Derivative(y(x), x) + (a**2 + x**2)**2*(b**2 + x**2)*Derivative(y(x), (x, 2)) + (a1 + b1*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out