Internal
problem
ID
[6273]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
566
Date
solved
:
Tuesday, September 30, 2025 at 02:42:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-2*(1-x)*y(x)+2*(-x+3)*x*(1+x)*diff(y(x),x)+(1-x)*x*(1+x)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(1 - x)*y[x] + 2*(3 - x)*x*(1 + x)*D[y[x],x] + (1 - x)*x*(1 + x)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x)*(x + 1)**2*Derivative(y(x), (x, 2)) + x*(6 - 2*x)*(x + 1)*Derivative(y(x), x) + (2*x - 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False