23.3.578 problem 586

Internal problem ID [6292]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 586
Date solved : Tuesday, September 30, 2025 at 02:45:05 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=y(x)+3*x^5*diff(y(x),x)+x^6*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\frac {1}{2 x^{2}}\right )+c_2 \cos \left (\frac {1}{2 x^{2}}\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 29
ode=y[x] + 3*x^5*D[y[x],x] + x^6*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\frac {1}{2 x^2}\right )-c_2 \sin \left (\frac {1}{2 x^2}\right ) \end{align*}
Sympy. Time used: 0.129 (sec). Leaf size: 51
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**6*Derivative(y(x), (x, 2)) + 3*x**5*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\frac {C_{1} \sqrt {\frac {1}{x^{2}}} J_{- \frac {1}{2}}\left (\frac {1}{2 x^{2}}\right )}{\sqrt {- \frac {1}{x^{2}}}} + C_{2} Y_{- \frac {1}{2}}\left (- \frac {1}{2 x^{2}}\right )}{x} \]